
© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

What’s ‘Next’ in
JSS?

Nick Allen

June 5th, 2021

#sugcon

Introduction
Independent Sitecore
architect based in the UK

1st Sitecore project in 2007

2

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

• Why Next?

• Workflow

• Getting started

• Pre-rendering options (SSG, ISG, SSR)

• Routing

• Demo solution

• Layout & components

• Routing

• Vercel deployments

Agenda

Why Next?

• Next is a framework built on top of React
• Next is an evolution of React born out of Jamstack lessons

learned in the enterprise
• Hybrid static and server side rendering
• Incremental static regeneration
• API routes to serverless functions
• Simplified implementation
• Developer experience

4

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

Full-stack development

• Windows

• Docker

• Sitecore Content Serialization (SCS)

• Sitecore-first

• Connected to Sitecore

Front-end development only

• Any OS supported by Node

• Code-first

• Disconnected from Sitecore

Workflow

+

Getting started

6

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

Open PowerShell as an administrator and install the .NET starter template

PowerShell

> dotnet new -i Sitecore.DevEx.Templates --nuget-source https://sitecore.myget.org/F/sc-packages/api/v3/index.json

dotnet new -i Sitecore.DevEx.Templates --nuget-source https://sitecore.myget.org/F/sc-packages/api/v3/index.json

Create the solution

> cd <solutions directory>
> dotnet new sitecore.nextjs.gettingstarted –n <project name>

Prepare the container environment (certificate generation, update .env and hosts file)

> cd <project directory>
> .\Init.ps1 –InitEnv –LicenseXmlPath <path to license> -AdminPassword <b?>

Download images, configure and start containers

> .\up.ps1

Pre-rendering options
(SSG, ISG, SSR)

Pre-rendering is one of the

most important concepts in

Next.js

8

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

SSG vs. SSR

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

SSG Functions

At build time data is fetched from Json files on the
file system containing the contents of each blog
post using the ids generated by getStaticPaths().

At build time an array of blog post ids (the URL in
this case) is generated from a Json file containing an
index of all available posts.

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

ISG Functions

Background regeneration ensures traffic is served
uninterruptedly, always from static storage, and the
newly built page (or component) is pushed only
after it’s done regenerating.

Now we have static content that is also dynamic!

At build time an array of blog post ids (the URL in
this case) is generated from a Json file containing an
index of all available posts.

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

SSR Functions

Because getServerSideProps is called at request
time, its parameter “context” contains request
specific parameters.

The results cannot be cached by a CDN without
extra configuration.

Routing

Data fetching & dynamic

routes

13

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

For simple scenarios we can create pre-
defined routes in the pages directory of our
application such as:

However for more complex applications
such as Sitecore we need to take advantage
of Next.JS dynamic routes, which behave a
little like wildcard items in Sitecore.

Dynamic Routes

Type Example Matches

Param blog/[path].tsx blog/1
blog/2
blog/n

Catch all blog/[…path].tsx blog/1
blog/1/edit
blog/foo/bar

Catch all
optional

blog/[[…path]].tsx blog
blog/1
blog/1/edit

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

By default the boilerplate solution created for you
during the getting started step contains a single “Catch
all optional” route:

[[…path]].tsx

And this route uses ISG. So effectively by default ISG is
enabled for all routes.

It’s important to note that the context passed into the:

• getStaticProps

• getServerSideProps

functions contains information about the parameters
in the current route but only when using dynamic
routes. This is Next.JS behaviour by design.

Dynamic Routes Boilerplate

Route Request Context

blog/[path].tsx blog/1 {
params: {

path: [“1”]
}

}

blog/[…id].tsx blog/1/edit {
params: {

id: [“1”, “edit”]
}

}

• Please insert a background image
that suits your presentation,

or leave it empty.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

Page props factory is responsible for (among other things) mapping the dynamic route information passed in the context, to a Sitecore
path in order to retrieve the correct data from the layout service.

Scenario A

• I want to “takeover” a page using a pre-defined
route

• foo.tsx

Scenario B

• I want to “takeover” a section of pages using a
dynamic route

• blog/[[…slug]].tsx

Both of these scenarios are possible but you need
to do a little work in the
SitecorePagePropsFactory.

Dynamic Routes Page Props Factory

Next
Router

getStaticProps
getServerSideProps

SitecorePagePropsFactory
Extract Path

LayoutService

context

context

path

Let’s see it in action

• Solution walkthrough

• Layout & components

• Vercel deployments

17

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

I am a proud community member! Please contact me on the following
handles:

sitecorechat.slack.com twitter sitecore.stackexchange.com

nick.allen @thinkfreshnick nick-allen

Thank you!
hello@thinkfreshfreelance.co.uk

https://thinkfreshfreelance.co.uk

