What's ‘Next’ in
JSS?

SUGCON

GLOBAL 2021

Nick Allen
June 5th, 2021

#sugcon

Introduction

Independent Sitecore
architect based in the UK

15t Sitecore project in 2007

MVP 2021

Technology

() sITECORE

“7thinkfresh

fﬁ‘!ﬂ!lﬁiﬁ""ﬁ’""';'t'n“‘f’,i“
T H A \

Why Next?

Workflow

Getting started

* Pre-rendering options (SSG, I1SG, SSR)
* Routing

« Demo solution

« Layout & components
* Routing

» Vercel deployments

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

Why Next?

Next is a framework built on top of React

Next is an evolution of React born out of Jamstack lessons
learned in the enterprise

Hybrid static and server side rendering
Incremental static regeneration

API routes to serverless functions
Simplified implementation

Developer experience

/
he Home of Home Search™ /{Ty¢

PRODUCTS & RBGRS

ot 4 Duty: Biner .

conn
\\\\\

Workflow

Full-stack development

Windows

Docker

Sitecore Content Serialization (SCS)

Sitecore-first

Connected to Sitecore

NEXT. + @

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

Front-end development only

« Any OS supported by Node
« Code-first

* Disconnected from Sitecore

NEXT.

Getting started

SUGCON

GLQBSI" 2021

PowerShell

Open PowerShell as an administrator and install the .NET starter template

> dotnet new -i Sitecore.DevEx.Templates --nuget-source https://sitecore.myget.org/F/sc-packages/api/v3/index.json

Create the solution

> cd <solutions directory>
> dotnet new sitecore.nextjs.gettingstarted -n <project name>

Prepare the container environment (certificate generation, update .env and hosts file)

> cd <project directory>
> .\Init.psl -InitEnv -LicenseXmlPath <path to license> -AdminPassword <b?>

Download images, configure and start containers &

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

——
N

Pre-rendering options
(SSG, ISG, SSR)

Pre-rendered HTML is displayed initialized and App becomes interactive P re = re n d e ri n g i S O n e Of t h e

E E most important concepts in

Next.|s

Pre-rendering (Using Next.js)

If your app has interactive components
like <Link />,they’ll be active after JS Ioads

No Pre-rendering (Plain React.js app) CO N

Initial Load: Hydration: React components are | L 2 O 2 1

App is not rendered initialized and App becomes interactive

JS loads
T e ey — e s R R el e

SSG vs. SSR

Of

Static Generation Server-side Rendering

The HTML is generated on each request.

The HTML is generated at build-time and is reused for each request.

Page request Page request
% ° 2 /5 NeXT. o 5 NeXTL

I\E TJS —/

next build —> — — 2

Builds the app for —_— (9\ — —

production

Reused for each
The HTML is generated request The HTML is generated The HTML is generated

|
G

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

SSG Functions

. export getStaticProps ({ params }) {
export EEtStatlcpathS () { post = JsonQuery(posts[url=%${params.id}] , { data: Content }).value
paths = Content.posts.map((post) L (oot 1o ey €
params: { id: post‘ urnl } category = JsonQuery(categories[id=${post.categoryId}] , { data: Categories }).value

}.)) if (category !==) {

post.category = category

}

}

return { paths, fallback:
return {
props: {
post: post

At build time an array of blog post ids (the URL in
this case) is generated from a Json file containing an

index of all available posts. At build time data is fetched from Json files on the

file system containing the contents of each blog
post using the ids generated by getStaticPaths().

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

ISG Functions

export getStaticPaths () {
paths = Content.posts.map((post)
params: { id: post.url }

1)

return { paths, fallback:

At build time an array of blog post ids (the URL in
this case) is generated from a Json file containing an
index of all available posts.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

({

SUGCON

GO BAL 2021

export async function getStaticProps() {
return {
props: await getDataFromCMS(),
// we will attempt to re-generate the page:

// - when a request comes in

// - at most once every second

revalidate: 1

Background regeneration ensures traffic is served
uninterruptedly, always from static storage, and the
newly built page (or component) is pushed only
after it’s done regenerating.

Now we have static content that is also dynamic! &

SSR Functions

Because getServerSideProps is called at request

tlme'. I.tS parameter “context” contains I’ECIUESt export getServerSideProps: GetServerSideProps = (context)
SpECIfIC parameters. props = await sitecorePagePropsFactory.create(context);

The results cannot be cached by a CDN without
extra conflguratlon. notFound = props.notFound ? { notFound:

return {
props,
...hotFound,
}s
s

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

Routing

Data fetching & dynamic
routes

SUGCON

GLOQB&L 2021

..........................
..

......

Dynamic Routes

For simple scenarios we can create pre-

defined routes in the pages directory of our

application such as:

Vv pages
> api
> blog
IS _appjs
JS _document,s

JS about,js

JS contactjs
JS indexs

JS services.js

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

SUGCON

GEOBAL 2021

However for more complex applications
such as Sitecore we need to take advantage
of Next.JS dynamic routes, which behave a
little like wildcard items in Sitecore.

Ty |Bample ___ Matches

Param

Catch all

Catch all
optional

blog/[path].tsx blog/1
blog/2
blog/n

blog/[...path].tsx blog/1
blog/1/edit
blog/foo/bar

blog/[[...path]].tsx blog
blog/1
blog/1/edit

Dynamic Routes Boilerplate

By default the boilerplate solution created for you
during the getting started step contains a single “Catch
all optional” route:

[[...path]].tsx

And this route uses ISG. So effectively by default ISG is
enabled for all routes.

export const getStaticProps: GetStaticProps = async (context) => {

const props = await sitecorePagePropsFactory.create(context);

return {
props,
revalidate: 30,
notFound: props.notFound,
¥
s

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

SUGCON

GEOBAL 2021

It's important to note that the context passed into the:
» getStaticProps
« getServerSideProps

functions contains information about the parameters
in the current route but only when using dynamic
routes. This is Next.JS behaviour by design.

R o

blog/[path].tsx blog/1 {
params: {
path: [“1"]
}
}
blog/[...id].tsx blog/1/edit {
params: {
id: [“1”, “edit"]
}
}

GO BAL 2021

Dynamic Routes Page Props Factory SUGCON

oy

Page props factory is responsible for (among other things) mapping the dynamic route information passed in the context, to a Sitecore
path in order to retrieve the correct data from the layout service.

Next
Router

context
\ 4

getStaticProps
getServerSideProps

context
A

SitecorePagePropsFactory
Extract Path

L path

LayoutService

Scenario A

+ | want to “takeover” a page using a pre-defined
route

+ foo.tsx
Scenario B

+ | want to “takeover” a section of pages using a
dynamic route

* blog/[[...slug]].tsx

Both of these scenarios are possible but you need
to do a little work in the
SitecorePagePropsFactory.

© 2021 Sitecore User Group Conference Europe and its respective speakers. All rights reserved.

6

nickwesselman @ 13 hours ago
So it looks like context.params would only be populated if there was a [param] in
the route path. For catchall routes, that appears to be the full path.

https:/nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-
generation
B nextjs.org
Basic Features: Data Fetching | Next.js
Next.js has 2 pre-rendering modes: Static Generation and Server-side
rendering. Learn how they work here. (43 kB) ~

NEXT.

Documentation

nickwesselman Q 13 hours ago

So you may need to customize your props factory to optionally accept the path
being routed and effectively hard code it? Don't see where Next exposes the URL
in the context otherwise.

Let's see it in action

 Solution walkthrough
« Layout & components

« Vercel deployments

AL |}
stk i (i i i
At Pt

t
R

-

P &

s

N

I am a proud community member! Please contact me on the following

handles:

nick.allen @thinkfreshnick nick-allen

sitecorechat.slack.com twitter sitecore.stackexchange.com

S

E

. y"

' C 4
>

o,
R
~

Thank you!

hello@thinkfreshfreelance.co.uk

https://thinkfreshfreelance.co.uk

[R5

“/7thinkfresh

ATV
A ot A

